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Abstract

Understanding the outbreak dynamics of the COVID-19 pandemic has important implications for successful containment and
itigation strategies. Recent studies suggest that the population prevalence of SARS-CoV-2 antibodies, a proxy for the number

f asymptomatic cases, could be an order of magnitude larger than expected from the number of reported symptomatic cases.
nowing the precise prevalence and contagiousness of asymptomatic transmission is critical to estimate the overall dimension

nd pandemic potential of COVID-19. However, at this stage, the effect of the asymptomatic population, its size, and its outbreak
ynamics remain largely unknown. Here we use reported symptomatic case data in conjunction with antibody seroprevalence
tudies, a mathematical epidemiology model, and a Bayesian framework to infer the epidemiological characteristics of COVID-
9. Our model computes, in real time, the time-varying contact rate of the outbreak, and projects the temporal evolution and
redible intervals of the effective reproduction number and the symptomatic, asymptomatic, and recovered populations. Our
tudy quantifies the sensitivity of the outbreak dynamics of COVID-19 to three parameters: the effective reproduction number,
he ratio between the symptomatic and asymptomatic populations, and the infectious periods of both groups. For nine distinct
ocations, our model estimates the fraction of the population that has been infected and recovered by Jun 15, 2020 to 24.15%
95% CI: 20.48%-28.14%) for Heinsberg (NRW, Germany), 2.40% (95% CI: 2.09%-2.76%) for Ada County (ID, USA), 46.19%
95% CI: 45.81%-46.60%) for New York City (NY, USA), 11.26% (95% CI: 7.21%-16.03%) for Santa Clara County (CA,
SA), 3.09% (95% CI: 2.27%-4.03%) for Denmark, 12.35% (95% CI: 10.03%-15.18%) for Geneva Canton (Switzerland),
.24% (95% CI: 4.84%-5.70%) for the Netherlands, 1.53% (95% CI: 0.76%-2.62%) for Rio Grande do Sul (Brazil), and
.32% (95% CI: 4.77%-5.93%) for Belgium. Our method traces the initial outbreak date in Santa Clara County back to
anuary 20, 2020 (95% CI: December 29, 2019–February 13, 2020). Our results could significantly change our understanding
nd management of the COVID-19 pandemic: A large asymptomatic population will make isolation, containment, and tracing
f individual cases challenging. Instead, managing community transmission through increasing population awareness, promoting
hysical distancing, and encouraging behavioral changes could become more relevant.
c 2020 Elsevier B.V. All rights reserved.
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1. Motivation

Since its outbreak in December 2019, the COVID-19 pandemic has rapidly swept across the globe and is now
ffecting 188 countries with more than 25 million cases reported worldwide [1]. In the early stages of a pandemic,
octors, researchers, and political decision makers mainly focus on symptomatic individuals that come for testing
nd address those who require the most urgent medical attention [2]. In the more advanced stages, the interest shifts
owards mildly symptomatic and asymptomatic individuals who – by definition – are difficult to trace and likely
o retain normal social and travel patterns [3]. In this manuscript, we collectively use the term “asymptomatic”
or undetected individuals who either have mild symptoms that are not directly associated with COVID-19 or
isplay no symptoms at all. Recent antibody seroprevalence studies suggest that the number of asymptomatic
OVID-19 cases outnumbers the symptomatic cases by an order of magnitude or more [4–26]. Estimating the
revalence and contagiousness of these asymptomatic cases is critical since it will change our understanding of the
verall dimension and the pandemic potential of COVID-19 [27]. Yet, at this stage, the effect of the asymptomatic
opulation, its size, and its outbreak dynamics remain largely unknown [28].

The first evidence of asymptomatic individuals in a family cluster of three was reported in late January, where
ne individual was mildly symptomatic and two remained asymptomatic, with normal lymphocyte counts and chest
omputer tomography images, but positive quantitative reverse transcription polymerase chain reaction tests [29].
s of mid June, more than 50 studies have reported an asymptomatic population, twenty-three of them with a

ample size of at least 500 [30], with a median undercount of 20 across all studies, suggesting that only one
n twenty COVID-19 cases is noticed and reported. These studies are based on polymerase chain reaction or
ntibody seroprevalence tests in different subgroups of the population, at different locations, at different points in
ime [4,21,31]. To no surprise, the reported undercount varies hugely, ranging from 3.5 and 5.0 in Luxembourg [18]
nd Germany [21] to 543 and 627 in Iran [17] and Japan [6] respectively. Most of these studies are currently
nly available on preprint servers, but an increasing number is now passing peer review, including a study of 1402
ndividuals in Wuhan City with an undercount of 22.1 [26], a study of 400 health care workers in London with
n undercount of 35.0 [32], a community spreading study of 131 patients with influenza-like symptoms in Los
ngeles with an undercount of 100.0 [33], and a seroprevalence study in Los Angeles county with an undercount
f 43.5 [34]. The reported trend across all studies is strikingly consistent: A much larger number of individuals
isplays antibody prevalence than we would expect from the reported symptomatic case numbers. Knowing the
xact dimension of the asymptomatic population is critical for two reasons: first, to truly estimate the severity of
he outbreak, e.g., hospitalization or mortality rates [27], and second, to reliably predict the success of surveillance
nd control strategies, e.g., contact tracing or vaccination [35].

While there is a pressing need to better understand the prevalence of asymptomatic transmission, it is also
ecoming increasingly clear that it will likely take a long time until we can, with full confidence, deliver
eliable measurements of this asymptomatic group [36]. In the meantime, mathematical modeling can provide
aluable insight into the tentative outbreak dynamics and outbreak control of COVID-19 for varying asymptomatic
cenarios [3]. Many classical epidemiology models base their predictions on compartment models in which
ndividuals pass through different stages as they experience the disease [37]. A popular model to simulate the
utbreak dynamics of COVID-19 is the SEIR model [2], which is made up of four compartments for the susceptible,
xposed, infectious, and recovered populations [38]. Here, to explicitly account for the asymptomatic population,
e introduce an SEIIR model, which further divides the infectious population into symptomatic and asymptomatic
roups [39]. Similar models have recently been used to study the general role of asymptomatic carriers in disease
ransmission [40] and to illustrate how asymptomatic individuals have facilitated the rapid spread of COVID-19
hroughout China [3], South Korea [41], and Italy [42]. While it is tempting – and easily possible – to introduce

any more sub-populations into the model, for example a pre-symptomatic, hospitalized, or mortality group [43],
ere, we focus on the simplest possible model that allows us to explore the role of the asymptomatic population
hroughout the COVID-19 pandemic. To systematically probe different scenarios, we combine this deterministic
EIIR model with a dynamic effective reproduction number, machine learning, and uncertainty quantification to

earn the reproduction number – in real time – and quantify and propagate uncertainties in the symptomatic-to-
symptomatic ratio and in the initial exposed and infectious populations. We show that this not only allows us to
isualize the dynamics and uncertainties of the dynamic contact rate, the effective reproduction number, and the

ymptomatic, asymptomatic, and recovered populations, but also to estimate the initial date of the outbreak.
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Fig. 1. SEIIR epidemiology model. The SEIIR model contains five compartments for the susceptible, exposed, symptomatic infectious,
asymptomatic infectious, and recovered populations. The transition rates between the compartments, β, α, and γ are inverses of the contact
period B = 1/β, the latent period A = 1/α, and the infectious period C = 1/γ . The symptomatic and asymptomatic groups have the same
latent period A, but they can have individual contact periods Bs = 1/βs and Ba = 1/βa and individual infectious periods Cs = 1/γs and

a = 1/γa. The fractions of the symptomatic and asymptomatic subgroups of the infectious population are νs and νa. We assume that the
nfection either goes through the symptomatic or the asymptomatic path, but not both for one individual.

. Methods

.1. Epidemiology modeling

EIIR epidemiology model. We model the epidemiology of COVID-19 using an SEIIR model with five compart-
ents, the susceptible, exposed, symptomatic infectious, asymptomatic infectious, and recovered populations. Fig. 1

llustrates our SEIIR model, which is governed by a set of five ordinary differential equations,

Ṡ = − S [ βs Is + βa Ia ]
Ė = + S [ βs Is + βa Ia ] − α E
İs = + νs α E − γs Is

İa = + νa α E − γa Ia

Ṙ = + γs Is + γa Ia ,

(1)

here the fractions of all five populations add up to one, S+E+Is+Ia+R = 1. We assume that both the symptomatic
roup Is and the asymptomatic group Ia can generate new infections. We introduce these two groups by fractions
s and νa of the subjects transferring from the exposed group E . We postulate that the two infectious groups Is

nd Ia have the same latent period A = 1/α, but can have individual contact periods Bs = 1/βs and Ba = 1/βa to
mimic their different community spreading, and individual infectious periods Cs = 1/γs and Ca = 1/γa to mimic
their different likelihood of isolation. From the infectious fractions, we can derive the overall contact and infectious
rates β and γ from their individual symptomatic and asymptomatic counterparts, βs, βa, γs, and γa,

β = νs βs + νa βa and γ = νs γs + νa γa . (2)

imilarly, we can express the overall contact and infectious periods B and C in terms of their symptomatic and
symptomatic counterparts, Bs, Ba, Cs, and Ca,

B =
Ba Bs

νs Ba + νa Bs
and C =

Ca Cs

νs Ca + νa Cs
. (3)

aturally, the different dynamics for the symptomatic and asymptomatic groups also affect the basic reproduction
umber R0, the number of new infections caused by a single one individual in an otherwise uninfected, susceptible
opulation,

R0 =
C
B

=
Ca Cs

Ba Bs

νs Ba + νa Bs

νs Ca + νa Cs
=

νs βs + νa βa

νs γs + νa γa
=

β

γ
. (4)

or a large asymptomatic group νa → 1, the basic reproduction number approaches the ratio between the infectious
nd contact periods of the asymptomatic population, R0 → Ca/Ba, which could be significantly larger than the
asic reproduction number for the symptomatic group, R0 = Cs/Bs, that we generally see reported in the literature.
o characterize the effect of changes in social behavior and other interventions that may affect contact, we assume

hat the contact rate β(t) can vary as a function of time [44], but is the same for the symptomatic and asymptomatic
roups,

β = βs = βa = β(t) such that R(t) =
C

=
Ca Cs

=
β(t)

=
β(t)

. (5)

B(t) [νs Ca + νa Cs] B(t) νs γs + νa γa γ

3
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Fig. 2. SEIR epidemiology model. The SEIR model contains four compartments for the susceptible, exposed, infectious, and recovered
opulations. The transition rates between the compartments, β, α, and γ are inverses of the contact period B = 1/β, the latent period

A = 1/α, and the infectious period C = 1/γ . If the transition rates are similar for the symptomatic and asymptomatic groups, the SEIIR
model simplifies to the SEIR model with Is = νs I and Ia = νa I .

This introduces a time-varying effective reproduction number R(t), which is an important real time characteristic
of the current outbreak dynamics.

SEIR epidemiology model. For the special case when the dynamics of the symptomatic and asymptomatic groups
are similar, i.e., βs = βa = β and γs = γa = γ , we can translate the SEIIR model (1) into the classical SEIR
model (6) with four compartments, the susceptible, exposed, infectious, and recovered populations [45–48]. For this
special case, we can back-calculate the symptomatic and asymptomatic groups from equation (6).3 as Is = νs I and
Ia = νa I . Fig. 2 illustrates the SEIR model, which is governed by a set of four ordinary differential equations [49],

Ṡ = −β SI
Ė = +β SI − α E
İ = + α E − γ I
Ṙ = + γ I .

(6)

Discrete SEIIR epidemiology model. We focus on the SEIIR model with five ordinary differential equations (1),
which we discretize in time using a finite difference approximation (◦̇) = [ (◦)n+1 − (◦)n ]/∆t of the evolution of all

ve populations (◦) = S, E, Is, Ia, R. Here ∆t = tn+1 − tn denotes the discrete time increment, usually ∆t = 1 day,
nd (◦)n+1 and (◦)n denote the populations of the new and previous time steps. We apply an explicit time integration
cheme to obtain the following discrete system of equations,

Sn+1 = [ 1 − [ βs Is,n + βa Ia,n ]∆t ] Sn
En+1 = + [ βs Is,n + βa Ia,n ]∆t Sn + [ 1 − α∆t ] En
Is,n+1 = + νs α∆t En + [ 1 − γs ∆t ] Is,n
Ia,n+1 = + νa α∆t En + [ 1 − γa ∆t ] Ia,n
Rn+1 = + [ γs Is,n + γa Ia,n ]∆t + Rn .

(7)

t each location, we begin our simulation on day t0, the day of the beginning of the local lockdown, with initial
onditions, S0, E0, Is0, Ia0, R0. We further assume that S0 = 1 − E0 − Is0 − Ia0, E0 = [ A/Cs ] [ Is0 + Ia0 ] [50], and
s Ia0 = [ 1 − νs ] Is0 to express all five initial conditions in terms of the initial symptomatic infectious population

Is0, such that S0 = 1 − [ 1 + A/Cs ]/νs Is0, E0 = [ A/Cs ]/νs Is0, Ia0 = [ 1 − νs ]/νs Is0, and R0 = 0. From the
olution of the time discrete SEIIR system (7), for each point in time, we calculate the detected population,

Dn+1 = Is,n+1 + Rs,n+1 = Dn + νs α En ∆t , (8)

s the discrete sum of the symptomatic infectious and recovered populations Is,n+1 and Rs,n+1 with Ṙs = γs Is, or,
quivalently, as the explicit update of the previous detected population Dn with the new symptomatic infectious
opulation, νs α En, that transitions from the exposed to the symptomatic infectious group. We compare the daily
imulated detected population D(t) against the daily reported detected population D̂(t), which we obtain by scaling
he daily number of detected cases by the total population N for each location [51–56].

.2. Seroprevalence studies

We consider seroprevalence studies up to mid June 2020 where the representation ratio, the ratio between the
mount of seroprevalence samples and the representative population, is larger than 0.02%. Subsequently, we draw
he daily number of confirmed reported cases for Heinsberg, Ada County, New York City, Santa Clara County,
enmark, Geneva Canton, Netherlands, Rio Grande do Sul, and Belgium from online data repositories [51–56].
he symptomatic fraction νs follows from the ratio between the reported confirmed cases for the studied region and

he amount of seroprevalence-estimated cases on the last day of the seroprevalence study. Table 1 summarizes the
tudy date, number of samples, representation ratio, population, and symptomatic fraction of each location.
4
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Table 1
Seroprevalence studies with a representative population larger than 0.02%, location, study date, number of samples, representation ratio,
population, and symptomatic fraction νs.

Location Study date Samples Population Repr. ratio Symptomatic fraction νs Ref.

Heinsberg, NRW, Germany March 30–April 6 919 41 946 2.191% 20.00% (95%CI: 16.32%–25.20%) [21]
Ada County, ID, USA Late April 4 856 481 587 1.008% 7.90% (95%CI: 6.40%–9.82%) [5]
New York City, NY, USA May 5–Jun 5 28 523 8 398 748 0.340% 5.76% (95%CI: 5.68%–5.84%) [14]
Santa Clara County, CA, USA April 2–3 3 330 1 781 642 0.187% 1.77% (95%CI: 1.05%–3.82%) [4]
Denmark April 6–17 9 496 5 824 857 0.163% 6.95% (95%CI: 5.13%–13.12%) [8]
Geneva Canton, Switzerland April 20–27 576 504 031 0.114% 10.34% (95%CI: 7.66%–16.44%) [22]
Netherlands April 1–15 7 361 17 282 163 0.043% 17.31% (95%CI: 15.14%–19.95%) [20]
Rio Grande do Sul, Brazil April 25–27 4 188 11 377 239 0.037% 8.10% (95%CI: 3.72%–22.07%) [19]
Belgium April 14–May 13 2 700 11 492 641 0.023% 10.21% (95%CI: 8.61%–12.18%) [16]

2.3. Bayesian learning

To calibrate our SEIIR model (1), we compare the model output, the simulated detected population D(t) for
given parameter set ϑ , against the data, the reported detected population D̂(t) for each location [51–56]. Our

ime-discrete SEIIR model (7) uses the following set of parameters,

ϑ∗
= { A, Cs, Ca, νs, β(t), E0, Is0, Ia0, σ } , (9)

he latency period A, the symptomatic and asymptomatic infectious periods Cs and Ca, the symptomatic fraction
s, the dynamic contact rate β(t), the initial exposed and infectious populations E0, Is0, and Ia0, and the likelihood
idth σ . To reduce the set of unknowns, we fix the latency period to A = 2.5 days and the symptomatic infectious
eriod to Cs = 6.5 days [57–60]. Since the asymptomatic infectious period Ca is unreported, we study three cases
ith Ca = 0.5, 1.0, 2.0 Cs resulting in infectious periods of Ca = 3.25, 6.5, and 13.0 days. We further express

he initial exposed and asymptomatic infectious populations in terms of the symptomatic infectious population as
E0 = [ A/Cs ]/νs Is0 [50] and Ia0 = [ 1 − νs ]/νs Is0. This results in the following reduced set of parameters,

ϑ = { νs, β(t), Is0, σ } , (10)

ncluding the symptomatic fraction νs, the dynamic contact rate β(t), the initial symptomatic infectious population
Is0, and the likelihood width σ .

ayesian inference. We use Bayesian inference to estimate the set of parameters ϑ such that the statistics of the
utput of the model D(t) agree with those of the data D̂(t) [61–64]. We relate the prior, likelihood, and posterior
sing Bayes’ theorem [65],

π (ϑ | D̂(t)) =
π (D̂(t) |ϑ) π (ϑ)

π (D̂(t))
, (11)

where π (ϑ) is the prior, i.e., the probability distribution of the model parameters, π (D̂(t)|ϑ) is the likelihood,
.e., the conditional probability of the data when the parameter set is fixed, π (ϑ |D̂(t)) is the posterior, i.e., the
onditional probability of the parameters for given data D̂(t), and π (D̂(t)) is the evidence.

riors. For the prior probability distributions π (ϑ), we assume weakly informative priors for our model parameters,
he symptomatic fraction νs, the dynamic contact rate β(t), the initial symptomatic infectious population Is0, and
he likelihood width σ . For the symptomatic fraction νs, we adopt the normal distributions from the individual local
ntibody seroprevalence studies of all nine locations [4,5,8,14,16,19–22]. Specifically, we set νs ∼ N (µs, σνs ),
here µs and σs are the mean and standard deviation of the symptomatic fraction based on the ratio of the

eported and seroprevalence-estimated numbers of confirmed cases for each location in Table 1. For the dynamic
ontact rate β(t), we postulate that its logarithm follows a Gaussian random walk, log(β(t)) ∼ GRW(t, µβ, σβ).
pecifically, this Gaussian random walk assumes a sequence of inter-dependent Gaussian distributions where the
ontact rate β(tn+1) on day tn+1 depends on the contact rate β(tn) of the previous day tn with the initial condition,

og( β0 ) ∼ N ( µβ0, σβ ), and the daily update, log( β( tn+1 )) | β( tn ) ∼ N ( log(β( tn )), σβ ), where µβ0 is the mean

5
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Table 2
Prior distributions and SEIIR model parameters.

Parameter Interpretation Distribution

νs Symptomatic fraction See Table 1 [4,5,8,14,16,19–22]

A Latent period Fixed (A = 2.5 days) [43,58,59]
Cs Symptomatic infectious period Fixed (Cs = 6.5 days) [57,59,60]
Ca Asymptomatic infectious period Fixed (Ca = 3.25, 6.5, 13.0 days) [57,59,60]

log(β(t)) Dynamic contact rate Gaussian random walk ( µ = µβ , σ = σβ )
µβ0 Initial contact rate Normal (µ = 0.0, σ = 1.0)
µβ Overall drift Normal (µ = 0.0, σ = 1.0)
σβ Daily step width Half-normal (σ = 0.02)

E0 Initial exposed Deterministic ( [ A/Cs ] [ Is0 + Ia0 ] ) [50]
log(Is0) Initial symptomatic Normal (µ = D̂(t0), σ = 1.0)
Ia0 Initial asymptomatic Deterministic ( [1 − νs ]/νs Is0 )

σ Likelihood width HalfCauchy (β = 1.0)

initial contact rate, σβ is the daily step width, and µβ is the overall drift between the initial value log( β( t0 ) )
and the final value log( β(tn+1) ). For the initial symptomatic infectious population Is0, we postulate a log-normal
distribution, log(Is0) ∼ N ( µI s0, σI s0 ), where we select a weakly informative prior for the mean µs = D̂(t0), as the
reported detected population on day t0 and a standard deviation of σs = 1. Table 2 summarizes our prior distributions
and the SEIIR model parameters.

Likelihood. For the likelihood π (D̂(t)|ϑ), we introduce a likelihood function L that evaluates the proximity between
the model output D(t), the simulated detected population for a given parameter set ϑ , and the data D̂(t), the relative
eported detected population in probabilistic terms,

L(ϑ, t) = student Tν=4( D̂(t) − D(ϑ, t), σ ) . (12)

e choose a Student’s t-distribution because it resembles a Gaussian distribution around the mean with heavy tails,
hich make the method more robust with respect to outliers and reporting noise [66,67]. Here σ represents the

ikelihood width for which we postulate a halfCauchy distribution, see Table 2. The likelihood,

π (D̂(t) |ϑ) =

n∏
i=0

L(ϑ, ti ) =

n∏
i=0

student Tν=4( D̂(ti ) − D(ϑ, ti ), σ ), (13)

s simply the product of all likelihood functions L evaluated at each time ti for i = 0, 1, . . . , n.

osteriors. With the prior π (ϑ) and the likelihood π (D̂(t) |ϑ), we estimate the posterior π (ϑ | D̂(t)) using Bayes’
heorem (11) [68]. Since we cannot describe the posterior distribution over the model parameters ϑ analytically, we
dopt approximate-inference techniques to calibrate our model on the available data. We use the NO-U-Turn sampler
NUTS) [69], which is a type of Hamiltonian Monte Carlo algorithm as implemented in PyMC3 [70]. We use four
hains. The first 4 times 500 samples serve to tune the sampler and are later discarded. The subsequent 4 times 1000
amples define the posterior distribution of the parameters ϑ . From the converged posterior distribution π (ϑ | D̂(t)),
e sample multiple combinations of parameters ϑ that describe the time evolution of detected population D̂(t).
sing these posterior samples, we quantify the uncertainty of each parameter. As such, each parameter set ϑ provides
set of values for the symptomatic fraction νs, the initial symptomatic populations Is0, and the dynamic contact rate
(t). From these values, we quantify the effective reproductive number R(t) using Eq. (5) and the time evolution
f the susceptible, exposed, symptomatic infectious, asymptomatic infectious and recovered populations, S(t), E(t),

Is(t), Ia(t), and R(t) using Eqs. (7) and report their values with the associated 95% credible interval [71].

ierarchical modeling. To estimate the asymptomatic infectious period Ca, we create a hierarchical model [72] and
nalyze the confirmed case data from all nine locations in Table 1. To prevent overfitting, we postulate that the initial
eproduction number R0 is the same for all nine locations and remains constant during a two-week time window
rior to lockdown. This implies that the contact rate β is static and constant. We assume a normal distribution for
he basic reproduction number R ∼ N (µ , σ ) with mean µ = 3.87 and standard deviation σ = 0.44 [73].
0 R0 R0 R0 R0

6
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Table 3
Prior distributions and SEIIR model parameters to hierarchically infer the asymptomatic infectious period Ca.

Parameter Interpretation Distribution

νs Symptomatic fraction See Table 1 [4,5,8,14,16,19–22]

A Latent period Fixed (A = 2.5 days) [43,58,59]
Cs Symptomatic infectious period Fixed (Cs = 6.5 days) [57,59,60]

Ca Asymptomatic infectious period Normal (µ = 6.5, σ = σCa )
σCa Standard deviation Half-normal (σ = 2.0)
Cai Local asymptomatic infectious period Normal (µ = Ca, σ = σCa )

R0 Initial reproduction number Normal (µ = 3.87, σ = 0.44) [73]

E0 Initial exposed Deterministic ( [ A/Cs ] [ Is0 + Ia0 ] ) [50]
log(Is0) Initial symptomatic Normal (µ = D̂(t0), σ = 1.0)
Ia0 Initial asymptomatic Deterministic ( [1 − νs ]/νs Is0 )

σ Likelihood width HalfCauchy (β = 1.0)

This defines the initial contact rate β0i at each location, i = 1, . . . , 9, as β0i = R0 (νsi/Cs + (1−νsi)/Cai). We create
hyper-distribution for the overall asymptomatic infectious period, Ca ∼ N (µCa, σCa), with mean µCa = 6.5 and

tandard deviation σCa ∼ halfN (2.0), and assume that each local asymptomatic infectious period Cai ∼ N (Ca, σCa)
s drawn from this hyperdistribution. All other parameters are similar to the previous section. Table 3 summarizes the
rior distributions and the SEIIR model parameters of our hierarchical model to infer the asymptomatic infectious
eriod Ca.

To estimate the hierarchical asymptomatic infectious period Ca, we use Bayesian inference. Following Eq. (11),
e relate the prior, likelihood, and posterior, with the only difference that the simulated and reported detected
opulations Di(t) and D̂i(t) are now vectors that contain the detected populations of all i = 1, . . . , 9 locations. The
ikelihood π (D̂(t) |ϑ) becomes the product of the all likelihood functions L evaluated for a period of n = 14 days
rior to lockdown,

π (D̂(t) |ϑ) =

n∏
i=0

L(ϑ, ti ) =

n∏
i=0

9∏
j=1

student Tν=4( D̂j(ti ) − Dj(ϑ, ti ), σ ). (14)

or each location, we estimate the posterior π (ϑ |D̂i(t)) using the NO-U-Turn sampler (NUTS) [69] in PyMC3 [70].
rom the converged posterior distribution, we sample multiple ϑ combinations to quantify the evolution of the
eproduction number R0 and contact rate β at each location, and the associated susceptible, exposed, symptomatic
nd asymptomatic infectious, and recovered populations with their associated 95% credible intervals.

utbreak date. For each sample from the posterior distribution, we use the inferred initial exposed and asymptomatic
nfectious populations E0 and Ia0 to estimate the date of the very first COVID-19 case in Santa Clara County [74].
pecifically, for each parameter set, we create an SEIIR model and assume that the outbreak begins with one
ingle asymptomatic infectious individual. We fix the latency and symptomatic infectious periods to A = 2.5
ays and Cs = 6.5 days and impose the hierarchically estimated infectious period Ca from the previous section.
or each posterior sample for the exposed, symptomatic infectious, and asymptomatic infectious population size
n the lockdown date, March 16, 2020, we use the Nelder–Mead optimization method [75] to find the most
robable outbreak origin date. Specifically, we solve the SEIIR model forward in time using an explicit time
ntegration, starting from various start dates before March 16, 2020, and iteratively minimize the difference between
he computed exposed, symptomatic, and asymptomatic infectious populations and the sample’s actual exposed,
ymptomatic, and asymptomatic infectious populations. We concomitantly fit a static contact rate β, which is
ounded between zero and the posterior sample’s estimated contact rate β0 at the beginning of the simulation t0.
epeating this process for each sample of the Bayesian inference generates a distribution of possible origin dates.

rom this distribution, we compute the most probable origin date and its uncertainty.

7
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Fig. 3. Outbreak dynamics of COVID-19 in Santa Clara County. The simulation learns the time-varying contact rate β(t) for fixed latent
and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days, 6.5

ays, and 13.0 days (from left to right). Computed and reported confirmed cases in Santa Clara County, D(t) = Is(t)+ Rs(t) and D̂(t) (top),
initial exposed and infectious populations, E0, Is0, and Ia0 (middle), and dynamic contact rate, β(t) (bottom). The gray and green–blue
regions highlight the 95% credible intervals on the confirmed cases D(t) (top) and the contact rate β(t) (bottom) based on the reported cases
D̂(t), while taking into account uncertainties on the fraction of the symptomatic infectious population νs = Is/I , and the initial exposed and
infectious populations E0, Is0, and Ia0.

3. Results

3.1. Outbreak dynamics of COVID-19 in Santa Clara County

Fig. 3 illustrates the outbreak dynamics of COVID-19 in Santa Clara County. To explore the effects of the
asymptomatic infectious period Ca on the initial effective reproduction number, we start the simulations on March
6, 2020, 10 days before the local lockdown date. The black dots highlight the reported detected population D̂(t) from
this day forward. Based on these data points, we learn the posterior distributions of our SEIIR model parameters
for fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic
nfectious periods, Ca = 3.25, 6.5, and 13.0 days, from left to right. The gray and green–purple regions highlight
he 95% credible intervals on the confirmed cases D(t), top row, and the contact rate β(t), bottom row, based on
he reported cases D̂(t), while taking into account uncertainties on the symptomatic infectious fraction νs, and the
nitial exposed and infectious populations E0, Is0, and Ia0. The red, orange, and green histograms on the middle row
isplay the inferred initial exposed and infectious populations, E0, Is0, and Ia0, for the three different asymptomatic
nfectious periods. The graphs confirm that our dynamic SEIIR epidemiology model is capable of correctly capturing
he gradual flattening and deflattening of the curve of confirmed cases in agreement with the decrease in new cases
eported in Santa Clara County, top row. The consistent downward trend of the contact rate β(t) after the lockdown
ate (March 16, 2020) quantifies the efficiency of public health interventions. The different magnitudes in the
ontact rate highlight the effect of the three different asymptomatic infectious periods Ca: For larger asymptomatic

nfectious periods Ca, from left to right, to explain the same number of confirmed cases D(t) = Is(t) + Rs(t), the

8
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contact rate β(t) has to decrease. On March 6, 2020, the mean contact rate β(t) was 0.688 (95% CI: 0.612–0.764)
or an infectious period of Ca = 3.25 days, 0.529 (95% CI: 0.464–0.593) for Ca = 6.5 days, and 0.463 (95% CI:
.403–0.523) for Ca = 13.0 days. By March 16, 2020, the day Santa Clara County announced the first county-wide
helter-in-place order in the entire United States, these contact rates β(t) were 0.491 (95% CI: 0.462–0.523) for
n infectious period of Ca = 3.25 days, 0.328 (95% CI: 0.305–0.352) for Ca = 6.5 days, and 0.252 (95% CI:
.234–0.271) for Ca = 13.0 days.

.2. Effect of asymptomatic transmission of COVID-19 in Santa Clara County

Fig. 4 visualizes the effect of asymptomatic transmission in Santa Clara County. The simulation learns the
ynamic contact rate β(t), and with it the time-varying effective reproduction number R(t), top row, for three
symptomatic infectious periods Ca = 3.25 days, 6.5 days, and 13.0 days, from left to right. The effective
eproduction number R(t) follows a similar downward trend as the contact rate β(t). For larger asymptomatic
nfectious periods Ca, from left to right, since R(t) = Cs β(t)/[ νs + νa Cs/Ca ], as Ca increases, Cs/Ca decreases,
nd R(t) increases. Since R(t) represents the number of new infections from a single case, a decrease below

R(t) < 1 implies that a single infectious individual infects less than one new individual, which indicates that
he outbreak decays. The dashed vertical lines indicate the date R(t) = 1 during which one infectious individual,
ither symptomatic or asymptomatic, infects on average one other individual. For an asymptomatic infectious period
f Ca = 3.25 days, it took until March 28 before Santa Clara County managed to get R(t) below 1 for the first time
fter the outbreak. For Ca = 6.5 days, this only occurred by April 1 and for Ca = 13.0 days, this occurred on April
, 2020. This confirms our intuition that, the larger the asymptomatic infectious period Ca, for example because
symptomatic individuals will not isolate as strictly as symptomatic individuals, the higher the effective reproduction
umber R(t), and the more difficult it will be to control R(t) by public health interventions. For each of the three
ases, the symptomatic infectious, asymptomatic infectious, and recovered population, are shown in the bottom row.
or larger asymptomatic infectious periods Ca, from left to right, the total infectious population I increases and its
aximum occurs later in time. Specifically, the maximum infectious population since March 6, 2020 amounts to

.70% (95% CI: 0.43%-0.97%) on March 28, 2020 for Ca = 3.25 days, 1.23% (95% CI: 0.72%-1.75%) on April
, 2020 for Ca = 6.5 days, and 2.10% (95% CI: 1.25%-2.94%) on April 7, 2020 for Ca = 13.0 days. For larger
symptomatic infectious periods Ca, from left to right, the recovered population R decreases. Specifically, on June
5, 2020, the recovered population R amounts to 10.85% (95% CI: 7.06%-16.09%) for an infectious period of
a = 3.25 days, 10.20% (95% CI: 6.07%-14.90%) for Ca = 6.5 days, and 9.90% (95% CI: 6.07%-13.93%) for
a = 13.0 days. Similarly, and important when considering different exit strategies, the total infectious population,

I = Is + Ia, on June 15, 2020 is estimated to 0.39% (95% CI: 0.24%-0.58%) for Ca = 3.25 days, 0.68% (95% CI:
.40%-1.01%) for Ca = 6.5 days, and 1.25% (95% CI: 0.73%-1.77%) for Ca = 13.0 days.

.3. Outbreak dynamics of COVID-19 worldwide

Fig. 5 illustrates the hierarchical asymptomatic infectious period Ca estimation for nine locations that reported
OVID-19 antibody prevalence in a representative sample of the population: Heinsberg (NRW, Germany), Ada
ounty (ID, USA), New York City (NY, USA), Santa Clara County (CA, USA), Denmark, Geneva Canton

Switzerland), Netherlands, Rio Grande do Sul (Brazil) and Belgium. This estimate assumes an initial fixed
eproduction number R0 = 3.87 (95%CI: 3.01–4.66) during a two-week window before lockdown which results
n an asymptomatic infectious period of Ca = 5.76 (95%CI: 3.59–8.09) days. With this value, we simulate the
utbreak dynamics of COVID-19 in all nine locations. Fig. 6 illustrates the learnt effective reproduction number

R(t), and the symptomatic and asymptomatic infectious populations Is and Ia, and the recovered population R for
ll nine locations. Here, we assume fixed latent and infectious periods of A = 2.5 days, Cs = 6.5 days, and the
ierarchical asymptomatic infectious period Ca = 5.76 (95%CI: 3.59–8.09) days from Fig. 5.

For all nine locations, the calculated metrics display the fine balance between the dynamics of the effective
eproduction number and the control of the epidemic outbreak. The downward trend of the effective reproductive
umber R(t) quantifies how fast each location managed to control the spreading of COVID-19. The dashed vertical
ine indicates the first time each location managed to lower the effective reproduction below R(t) = 1 after

ockdown. This critical transition occurred on March 20 for Heinsberg, April 4 for Ada County, April 28 for

9
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Fig. 4. Effect of asymptomatic transmission of COVID-19 in Santa Clara County. The simulation learns the time-varying contact rate
β(t), and with it the time-varying effective reproduction number R(t), for fixed latent and symptomatic infectious periods A = 2.5 days and

s = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days, 6.5 days, and 13.0 days (from left to right). The downward
rend of the effective reproduction number R(t) reflects the efficiency of public health interventions (top row). The dashed vertical lines mark
he critical time period during which the effective reproductive reproduction number fluctuates around R(t) = 1. The simulation predicts the
ymptomatic infectious, asymptomatic infectious, and recovered populations Is, Ia, and R (bottom row). The colored regions highlight the

95% credible interval for uncertainties in the number of confirmed cases D, the fraction of the symptomatic infectious population νs = Is/I ,
the initial exposed population E0 and the initial infectious populations Is0 and Ia0.

New York City, March 30 for Santa Clara County, April 8 for Denmark, April 2 for Geneva, April 14 for the

Netherlands, June 8 for Rio Grande do Sul and April 11 for Belgium. Based on our simulations, the maximum

infectious population size amounted to 3.54% (95% CI: 2.96%-4.11%) on March 19 in Heinsberg, 0.47% (95% CI:

0.41%-0.55%) on May 5 in Ada County, 6.11% (95% CI: 5.99%-6.21%) on April 13 in New York City, 1.11% (95%

CI: 0.69%-1.65%) on March 29 in Santa Clara County, 0.38% (95% CI: 0.27%-0.50%) on April 9 in Denmark,

2.10% (95% CI: 1.65%-2.69%) on April 2 in Geneva, 0.62% (95% CI: 0.56%-0.68%) on April 15 in the Netherlands,

0.28% (95% CI: 0.14%-0.48%) on June 8 in Rio Grande do Sul, and 0.70% (95% CI: 0.62%-0.78%) on April 11

in Belgium. On Jun 15, 2020, the estimated recovered population reached 24.15% (95% CI: 20.48%-28.14%) in

Heinsberg, NRW, Germany 2.40% (95% CI: 2.09%-2.76%) in Ada County, ID, USA 46.19% (95% CI: 45.81%-

46.60%) in New York City, NY, USA 11.26% (95% CI: 7.21%-16.03%) in Santa Clara County, CA, USA 3.09%

(95% CI: 2.27%-4.03%) in Denmark 12.35% (95% CI: 10.03%-15.18%) in Geneva Canton, Switzerland 5.24%

(95% CI: 4.84%-5.70%) in Netherlands 1.53% (95% CI: 0.76%-2.62%) in Rio Grande do Sul, Brazil 5.32% (95%
CI: 4.77%-5.93%) in Belgium.
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Fig. 5. Hierarchical asymptomatic infectious period Ca estimation. Assuming an initial fixed reproduction number R0 = 3.87 (95%CI:
3.01–4.66) [73], the simulation generates histograms of the asymptomatic infectious period Ca for each location based on the location-specific
symptomatic fraction νs. The black dots and gray regions represent the reported and simulated detected cases D̂(t) and D(t) respectively.
The hierarchical hyperdistribution for the asymptomatic infectious period results in Ca = 5.76 (95%CI: 3.59–8.09) days, right histogram.

3.4. Estimating the outbreak date

Fig. 7 shows the estimated outbreak date of COVID-19 in Santa Clara County. For fixed latent and symptomatic
infectious periods A = 2.5 days and Cs = 6.5 days, and for the hierarchically estimated asymptomatic infectious
periods Ca = 5.76 (95%CI: 3.59–8.09) days, the graph highlights the estimated date of the first COVID-19 case
in the county. Based on the reported case data from March 16, 2020 onward, and taking into account uncertainty
on the fraction of the symptomatic infectious population νs, on the initial exposed population E0, and on the initial
symptomatic and asymptomatic infectious populations Is0 and Ia0, we systematically backtracked the date of the
first undetected infectious individual. Our results suggest that the first case of COVID-19 in Santa Clara County
dates back to January 20, 2020 (95% CI: December 29, 2019–February 13, 2020).

4. Discussion

A key question in understanding the outbreak dynamics of COVID-19 is the dimension of the asymptomatic
population and its role in disease transmission. Throughout the past months, dozens of studies have been initiated
to quantify the fraction of the general population that displays antibody prevalence but did not report symptoms
of COVID-19. Here we assume that this subgroup of the population has been infected with the novel coronavirus,
but has remained asymptomatic, or only displayed mild symptoms that were not directly reported in the context of
COVID-19. We collectively map this subgroup into an asymptomatic population and additively decompose the total
infectious population, I = Is + Ia, into a symptomatic group Is and an asymptomatic group Ia. We parameterize
this decomposition in terms of a single scalar valued parameter, the symptomatic fraction νs. Within this paradigm,
we can conceptually distinguish two scenarios: the special case for which both subgroups display identical contact
rates β, latent periods A, and infectious periods C , and the general case for which these transition dynamics are
different.

For comparable dynamics, the size of the asymptomatic population does not affect overall outbreak
dynamics. For the special case in which both subgroups display identical contact rates β, latent rates α, and
infectious rates γ [76], our study shows that the overall outbreak dynamics can be represented by the classical

SEIR model [49] using Eqs. (6). Importantly, however, since the reported case data only reflect the symptomatic
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Fig. 6. Outbreak dynamics of COVID-19 worldwide. Dynamic effective reproduction number R(t) and symptomatic, asymptomatic, and
recovered populations at all nine locations. The simulation learns the time-varying contact rate β(t), and with it the time-varying effective
reproduction number R(t), to predict the symptomatic infectious, asymptomatic infectious, and recovered populations Is, Ia, and R, for fixed
latent and infectious periods A = 2.5 days, Cs = 6.5 days, the hierarchical asymptomatic infectious period Ca = 5.76 (95%CI: 3.59–8.09)
days from Fig. 5. The dashed vertical lines mark the first time each location managed to lower the effective reproduction below R(t) = 1
after lockdown. The colored regions highlight the 95% credible interval for the effective reproductive number R(t) (top), the symptomatic and
asymptomatic populations Is and Ia, and the recovered population R (bottom plots), for uncertainties in the number of confirmed cases D,
the fraction of the symptomatic infectious population νs, the initial exposed population E0, and the initial infectious populations Is0 and Ia0.
12
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Fig. 7. Estimating the outbreak date of COVID-19 in Santa Clara County varying asymptomatic infectious periods Ca. Estimated
date of the first COVID-19 case in Santa Clara County for fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days,
nd for the hierarchical asymptomatic infectious period Ca = 5.76 (95%CI: 3.59–8.09) days from Fig. 5. The colored regions in the main
lot highlight the 95% credible interval for the time evolution of the exposed and asymptomatic infectious populations E and Ia estimated

based on the reported cases D̂(t) from March 16, 2020 onward and taking into account uncertainties on the fraction of the symptomatic
infectious population νs = Is/I , and the exposed and asymptomatic infectious populations E0 and Ia0 on March 16, 2020 (right plot). The

ottom plot histogram shows the distribution of the most probable origin dates to January 20, 2020 (95% CI: December 29, 2019–February
3, 2020).

nfectious and recovered groups Is and Rs, the true infectious and recovered populations I = Is/νs and R = Rs/νs

could be about an order of magnitude larger than the SEIR model predictions. From an individual’s perspective, a
smaller symptomatic group νs, or equivalently, a larger asymptomatic group νa = [1 − νs], could have a personal
effect on the likelihood of being unknowingly exposed to the virus, especially for high-risk populations: A larger
asymptomatic fraction νa would translate into an increased risk of community transmission and would complicate
outbreak control [27]. From a health care perspective, however, the special case with comparable transition dynamics
would not pose a threat to the health care system since the overall outbreak dynamics would remain unchanged,
independent of the fraction νa of the asymptomatic population: A larger asymptomatic fraction would simply imply
that a larger fraction of the population has already been exposed to the virus – without experiencing significant
symptoms – and that the true hospitalization and mortality rates would be much lower than the reported rates [30].

For different dynamics, the overall outbreak dynamics depend on both size and infectiousness
of the asymptomatic group. For the general case in which the transition rates for the symptomatic and
asymptomatic groups are different, the overall outbreak dynamics of COVID-19 become more unpredictable, since
little is known about the dynamics of the asymptomatic population [40]. To study the effects of different dynamics
between the symptomatic and asymptomatic groups, we decided to collectively represent a lower infectivity of
the asymptomatic population through a smaller infectious period Ca < Cs and a lack of early isolation of the
asymptomatic population through a larger infectious period Ca > Cs, while, for simplicity, keeping the latent

eriod A and contact rate β similar across both groups [59]. Our study shows that the overall reproduction number,
R(t) = [Ca Cs]/[νs Ca + νa Cs] β(t), and with it the outbreak dynamics, depend critically on the fractions of the
ymptomatic and asymptomatic populations νs and νa and on the ratio of the two infectious periods Cs and Ca.
o illustrate these effects, we report the results for three different scenarios where the asymptomatic group is half
s infectious, Ca = 0.5 Cs, equally infectious, Ca = Cs, and twice as infectious Ca = 2.0 Cs as the symptomatic
roup for Santa Clara County. The second case, the middle column in Figs. 3 and 4, corresponds to the special
ase with comparable dynamics and similar parameters. Our learnt asymptomatic infectious periods of Ca = 5.76
ays in Fig. 5 suggest that Ca is smaller than the symptomatic infectious period of Cs = 6.5 days and that the

symptomatic population is slightly less infectious as the symptomatic population. This can be a combined effect

13



M. Peirlinck, K. Linka, F. Sahli Costabal et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113410

d
d
W
b
n
P
t
m
r
e

T
i
r
i
C
d
C
a
2
w
t
b
A
b
g
c
w
c
o

E
T
s
u
o
i
p
c
s
t
p
0
t
w

of being less contagious but, at the same time, having more contacts, since asymptomatic individuals, by definition,
do not realize that they are spreading the disease [77].

Dynamic contact rates are a metric for the efficiency of public health interventions. Classical SEIR
epidemiology models with static parameters are well suited to model outbreak dynamics under unconstrained
conditions and predict how the susceptible, exposed, infectious, and recovered populations converge freely towards
the endemic equilibrium [49]. However, they cannot capture changes in disease dynamics and fail to converge
towards a temporary equilibrium before the entire population has become sufficiently immune to prevent further
spreading [43]. To address this limitation, we introduce a time-dependent contact rate β(t), which we learn

ynamically from the reported case data. Figs. 3 and 6 demonstrate that our approach can successfully identify a
ynamic rate that not only decreases monotonically, but is also capable of reproducing local contact fluctuations [44].
ith this dynamic contact rate, our model can capture the characteristic S-shaped COVID-19 case curve that plateaus

efore a large fraction of the population has been affected by the disease, resembling a Gompertz function. It also
aturally captures a potential regrowth of the contact rate β(t), and with it the effects of a second wave [78].
revious studies have inferred discrete date points at which the contact rates vary [66] or used sliding windows over

he amount of novel reported infections [79] to motivate dynamic contact rates. As such, our framework provides a
odel-based method for statistical inference of virus transmissibility: It naturally learns the most probable contact

ate from the changing time evolution of new confirmed cases and concomitantly quantifies the uncertainty on that
stimation.

he dynamics of the asymptomatic population affect the effective reproduction number. Our analysis
n Eqs. (4) and (5) and our simulations in Fig. 4 illustrate how asymptomatic transmission affects the effective
eproduction number, and with it the outbreak dynamics of COVID-19. Our results show that, the larger the
nfectious period Ca of the asymptomatic group, the larger the initial effective reproduction number, R(t) =

s β(t)/[ νs + νa Cs/Ca ], and the later the drop of R(t) below the critical value of one. A recent study analyzed the
ynamics of the asymptomatic population in three consecutive windows of two weeks during the early outbreak in
hina [3]. The study found relatively constant latency and infectious periods A and C , similar to our assumption,
nd a decrease in the contact rate β = 1.12, 0.52, 0.35 days−1 and in the effective reproduction number R(t) =

.38, 1.34, 0.98, which is consistent with our results. However, rather than assuming constant outbreak parameters
ithin pre-defined time windows, our study learns the effective reproduction number dynamically, in real time, from

he available data. Figs. 4 and 6 demonstrate that we can successfully learn the critical time window until R(t) drops
elow 1, which, in Santa Clara County, took till March 28 for Ca =3.25 days, till April 1 for Ca = 6.5 days and till
pril 8 for Ca = 13.0 days. Our findings are consistent with the observation that the basic reproduction number will
e over-estimated if the asymptomatic group has a shorter generation interval, and underestimated if it has a longer
eneration interval than the symptomatic group [40]. Naturally, these differences are less pronounced under current
onditions where the effective reproduction number is low and the entire population has been sheltering in place. It
ill be interesting to see if the effects of asymptomatic transmission become more visible as we gradually relax the

urrent constraints and allow all individuals to move around and interact with others more freely. Seasonality, effects
f different temperature and humidity, and other unknown factors may also influence the extent of transmission.

stimates of the infectious asymptomatic population may vary, but general trends are similar.
hroughout the past months, an increasing number of researchers around the globe have started to characterize the
ize of the asymptomatic population to better understand the outbreak dynamics of COVID-19 [30]. The reported
ndercount varies largely with values on the order of one estimated by the World Health Organization [80] and values
n the order of ten reported by the Center for Disease Control and Prevention [36]. Two major challenges drive the
nterest in these studies: estimating the severity of the outbreak, e.g., hospitalization and mortality rates [27], and
redicting the success of surveillance and control efforts, e.g., contact tracing or vaccination [35]. This is especially
hallenging now – in almost complete lockdown – when the differences in transmission dynamics between the
ymptomatic and asymptomatic populations are small and difficult to quantify. However, as Fig. 4 suggests, these
ransmission dynamics can have a significant effect on the size of the asymptomatic population: For infectious
eriods of Ca = 0.5, 1.0, and 2.0 Cs, the maximum infectious population in Santa Clara County varies from
.70% and 1.23% to 2.10%. Interestingly, not only the sum of the infectious and recovered populations, but also
he uncertainty of their prediction, remain relatively insensitive to variations in the infectious period. To explore

hether this is a universal trend, we perform the same analysis for nine different locations at which COVID-19
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antibody prevalence was measured in a representative sample of the population, Heinsberg (NRW, Germany) [21],
Ada County (ID, USA) [5], New York City (NY, USA) [14], Santa Clara County (CA, USA) [4], Denmark [8],
Geneva Canton (Switzerland) [22], Netherlands [20], Rio Grande do Sul (Brasil) [19], and Belgium [16]. The
fraction of the symptomatic population in these nine locations is νs = 20.00%, 7.90%, 5.76%, 1.77%, 6.95%,

0.34%, 17.31%, 8.10%, and 10.21% respectively, broadly representing the range of reported symptomatic versus
stimated total cases worldwide [4–26]. Of the nine locations we analyzed here, Heinsberg tested IgG and IgA, Ada
ounty tested IgG, New York City tested IgG, Santa Clara County tested IgG and IgM, Denmark tested IgG and

gM, Geneva tested IgG, the Netherlands tested IgG, IgM and IgA, Rio Grande do Sul tested IgG and IgM, and
elgium tested IgG. While we did include reported uncertainty on the seroprevalence data, seroprevalence would

ikely have been higher if all locations had tested for all three antibodies. Despite these differences, the effective
eproduction numbers R(t) and the infectious and recovered populations Is, Ia, and R in Fig. 6 display remarkably
imilar trends: In most locations, the effective reproduction number R(t) drops rapidly to values below one within a
indow of about three weeks after the lockdown date. However, the maximum infectious population, a value that is

losely monitored by hospitals and health care systems, varies significantly ranging from 0.28% and 0.38% in Rio
rande do Sul and Denmark respectively to 3.54% and 6.11% in Heinsberg and New York City respectively. This

s consistent with the reported ‘superspreader’ events in these last two locations. An effect that we do not explicitly
ddress is that immune response not only results COVID-19 antibodies (humoral response), but also from innate and
ellular immunity [81]. While it is difficult to measure the effects of the unreported asymptomatic group directly,
nd discriminate it precisely from innate and cellular immunity, mathematical models can provide valuable insight
nto how this population modulates the outbreak dynamics and the potential of successful outbreak control [3].

imulations provide a window into the outbreak date. Santa Clara County was home to the first individual
ho died with COVID-19 in the United States. Although this happened as early as February 6, the case remained
nnoticed until April 22 [82]. The unexpected new finding suggests that the new coronavirus was circulating in the
ay Area as early as January. The estimated uncertainty on the exposed, symptomatic infectious, and asymptomatic

nfectious populations of our model allows us to estimate the initial outbreak date dates back to January 20 (Fig. 7).
his back-calculated early outbreak date is in line with our intuition that COVID-19 is often present in a population

ong before the first official case is reported. Interestingly, our analysis comes to this conclusion purely based on a
ocal serology antibody study [4] and the number of reported cases after lockdown [74].

imitations. Our approach naturally builds in and learns several levels of uncertainties. By design, this allows us
o estimate sensitivities and credible intervals for a number of important model parameters and discover important
eatures and trends. Nevertheless, it has a few limitations, some of them by design, some simply limited by the
urrent availability of data: First, our current SEIIR model assumes a similar contact rate β(t) for symptomatic
nd asymptomatic individuals. While we can easily adjust this in the model by defining individual symptomatic
nd asymptomatic rates βs(t) and βa(t), we currently do not have data on the temporal evolution of the hidden
symptomatic infectious population Ia(t) and longitudinal large population antibody follow-up studies would be
eeded to appropriately calibrate βa(t). Second, the ratio between the symptomatic and asymptomatic populations
s : νa can vary over time, especially, as we have shown, if both groups display notably different dynamics, in our
odel represented through Cs and Ca. Since this can have serious effects on the overall reproduction number R(t),

nd with it on required outbreak control strategies, it seems critical to perform more tests and learn the dynamics of
he fractions νs(t) and νa(t) of both groups. Third, and this is not only true for our specific model, but for COVID-19
orecasts in general, all predictions can be sensitive to the amount of testing in time. As such, they crucially rely on
esting policies and testing capacities. We expect to see a significant increase in the symptomatic-to-asymptomatic,
r rather detected-to-undetected, ratio as we move towards systematically testing larger fractions of the population
nd more and more people who have no symptoms at all. The intensity of testing increases in most locations
uring our simulation period. For example, in Santa Clara County, testing was extremely limited until early April,
ncreased substantially in the first three weeks of April, and even more after. Including limited testing and more
ndocumented cases during the early outbreak would shift the case distribution towards earlier days, and predict
n even earlier outbreak date. When longitudinal antibody studies become available, additional methodologies can
e developed to correct for this limitation which include a dynamic evolution for the symptomatic/asymptomatic
ractions. Fourth, while we have included uncertainty in the seroprevalence data, the nine locations we analyzed here

ested different types of antibodies and had different sampling procedures. Seroprevalence could have been higher
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if all locations had tested for the same three antibodies and data may differ depending on biases introduced by the
sampling procedure. Finally, our current model does not explicitly account for innate and cellular immunity. If the
fraction of the population with innate and cellular immunity is substantially high, we would anticipate a smaller
susceptible population and a larger and earlier protective immunity overall. These, and other limitations related to
the availability of information, can be easily addressed and embedded in our model and will naturally receive more
clarification as studies and data become available in the coming months.

5. Conclusions

The rapid and devastating development of the COVID-19 pandemic has raised many open questions about
ts outbreak dynamics and unsuccessful outbreak control. From an outbreak management standpoint – in the
bsence of effective vaccination and treatment – the two most successful strategies in controlling an infectious
isease are isolating infectious individuals and tracing and quarantining their contacts. Both critically rely on a
apid identification of infections, typically through clinical symptoms. Recent antibody prevalence studies could
xplain why these strategies have largely failed in containing the COVID-19 pandemic: Increasing evidence suggests
hat the number of unreported asymptomatic cases could outnumber the reported symptomatic cases by an order
f magnitude or more. Mathematical modeling, in conjunction with reported symptomatic case data, antibody
eroprevalence studies, and machine learning allows us to infer, in real time, the epidemiology characteristics of
OVID-19. We can now visualize the invisible asymptomatic population, estimate its role in disease transmission,
nd quantify the confidence in these predictions. A better understanding of asymptomatic transmission will help
s evaluate strategies to manage the impact of COVID-19 on both our economy and our health care system. A
arge asymptomatic population is associated with a high risk of community spread and could require a conscious
hift from containment to mitigation induced by behavior changes. Our study suggests that, until vaccination and
reatment become available, increasing population awareness, encouraging increased hygiene, mandating the use of
ace masks, restricting travel, and promoting physical distancing could be the most successful strategies to manage
he impact of COVID-19 on both our economy and our health care system.
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ppendix

To visualize the effect of asymptomatic transmission on the outbreak dynamics of COVID-19, we perform a
ensitivity analysis with respect to the two most relevant parameters associated with asymptomatic transmission,
he symptomatic fraction νs and the asymptomatic infectious period Ca. To highlight the effect of both parameters,

we visualize the exposed, symptomatic and asymptomatic infectious, and recovered populations of our SEIIR model,

Ṡ = − S β(t) [ Is + Ia ]
Ė = + S β(t) [ Is + Ia ] − α E
İs = + νs α E − γs Is

İa = + νa α E − γa Ia

Ṙ = + γs Is + γa Ia .

(15)

We assume that the symptomatic and asymptomatic contact rates are equal, β = βs = βa, and that the differences
etween symptomatic and asymptomatic transmission manifest themselves exclusively in the infectious periods

s = 1/γs and Ca = 1/γa. For illustrative purposes, rather than using a dynamic contact rate of Gaussian random
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Fig. 8. SEIIR epidemiology model. Sensitivity with respect to the symptomatic and asymptomatic fractions νs and νa. Darkest curves
orrespond to the special case of only symptomatic transmission, νs = 1.0 (left) and only asymptomatic transmission, νa = 1.0 (right); lightest
urves vice versa. For the special case with similar symptomatic and asymptomatic infectious periods, Ca = Cs, the SEIIR model reduces
o the classical SEIR model with Is = νs I and Ia = νa I . The set of blue curves illustrates the symptomatic part of the recovered population
Rs = νs R; the steepest blue curve is the total recovered population R, which is independent of νs and νa. Latent period A = 2.5 days,
ymptomatic and asymptomatic infectious periods Cs = 6.5 days and Ca = 6.5 days, and contact rate β(t) = β0−

1
2 [1+tanh([t−t∗]/T )][β0−βt]

ith β0 = 0.65 /days, βt = 0.10 /days, t∗ = 18.61 days, and T = 10.82 days.

walk type as we have proposed in the main body of this manuscript, we adopt a smooth, monotonically decreasing
dynamic contact rate of hyperbolic tangent type [44],

β(t) = β0 −
1
2 [1 + tanh([t − t∗]/T )][β0 − βt] , (16)

here β0 is the basic contact rate, βt is the reduced contact rate, t∗ is the adaptation time, and T is the adaptation
peed. To mimic realistic outbreak dynamics, we adopt the basic contact rate β0 = 0.65 /days, the reduced contact
ate βt = 0.10 /days, the adaptation time t∗

= 18.61 days, and the adaptation speed T = 10.82 /days from the
ean values across the 27 countries of the European union [44]. Similar to the main body of this manuscript, we

elect a latent period of A = 1/α = 2.5 days and a symptomatic infectious period of Cs = 1/γa = 6.5 days. For the
ensitivity analysis study three cases: (i) varying symptomatic and asymptomatic fractions νs = [0.0, . . . , 1.0] and
a = [0.0, . . . , 1.0] at Ca = 6.5 days; (ii) a varying symptomatic fraction νs = [0.0, . . . , 1.0] at fixed Ca = 3.25
ays and Ca = 13 days; and (iii) a varying asymptomatic infectious period Ca = [3.25, . . . , 13.00] days at fixed
s = 0.2 and νs = 0.8. For a symptomatic fraction of νs = 0.2, the undercount is four, i.e., for every reported case,
here are four unreported cases. For a symptomatic fraction of νs = 0.8, the undercount is one fourth, i.e., for every
our reported cases, there is one unreported case.

Fig. 8 highlights the effect of varying symptomatic and asymptomatic fractions νs and νa for similar infectious
eriods Ca = Cs. The darkest curves correspond to the special case of only symptomatic transmission, νs = 1.0
nd only asymptomatic transmission, νa = 1.0; the lightest curves vice versa. For the special case with similar
ymptomatic and asymptomatic disease dynamics, the SEIIR model (1) reduces to the classical SEIR model (6),
nd we can simply post-process the symptomatic and asymptomatic infectious populations as Is = νs I and Ia = νa I .
he set of blue curves illustrates the symptomatic part of the recovered population, Rs = νs R for varying νs and
a, which is the fraction of the recovered population that is reported in the public data bases. The steepest blue
urve is the total recovered population, R = Rs + Ra = [ νs + νa ] R, which, for this special case, is independent of
he symptomatic and asymptomatic fractions νs and νa. For example, for a symptomatic fraction of νs = 0.2, the
atio between both curves is R/Rs = 5, which implies that five times more individuals have actually already gone
hrough the disease than we would expect from the reported case data in public databases.

Fig. 9 highlights the effect of the symptomatic fraction νs. The dark red, orange, green, and blue curves

orrespond to the special case of the regular SEIR model (6) without asymptomatic transmission and thus νs = 1.0
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Fig. 9. SEIIR epidemiology model. Sensitivity with respect to the symptomatic fraction νs. Darkest curves correspond to the special
case of no asymptomatic transmission, νs = 1.0, lightest curves to only asymptomatic transmission, νs = 0.0. For a smaller asymptomatic
nfectious period of Ca = 0.5 Cs, the outbreak dynamics are governed by the symptomatic population Is and the recovered population
R decreases with increasing asymptomatic transmission νa (left). For a larger asymptomatic infectious period of Ca = 2 Cs, the outbreak
dynamics are governed by the asymptomatic population Ia and the recovered population increases with increasing asymptomatic transmission
(right). Latent period A = 2.5 days, symptomatic infectious period Cs = 6.5 days, asymptomatic infectious period Ca = 3.25 days (left) and

a = 13 days (right), and contact rate β(t) = β0 −
1
2 [1 + tanh([t − t∗]/T )][β0 − βt] with β0 = 0.65 /days, βt = 0.10 /days, t∗ = 18.61 days,

nd T = 10.82 days.

Fig. 10. SEIIR epidemiology model. Sensitivity with respect to the asymptomatic infectious period Ca. Darkest curves correspond to
a larger asymptomatic infectious period of Ca = 2 Cs, lightest curves to a smaller period Ca = 0.5 Cs. For a larger symptomatic fraction
of νs = 0.8, the outbreak dynamics are governed by the symptomatic population Is and the recovered population R is relatively insensitive
to the asymptomatic infectious period Ca (left). For a smaller symptomatic fraction of νs = 0.2, the outbreak dynamics are governed by
he asymptomatic population Ia and the recovered population R increases markedly with an increasing asymptomatic infectious period Ca
right). Latent period A = 2.5 days, symptomatic infectious period Cs = 6.5 days, asymptomatic infectious period Ca = 3.25 days (left) and
a = 13 days (right), and contact rate β(t) = β0 −

1
2 [1 + tanh([t − t∗]/T )][β0 − βt] with β0 = 0.65 /days, βt = 0.10 /days, t∗ = 18.61 days,

nd T = 10.82 days.

nd νa = 0.0. The lighter curves show the effect of decreasing the symptomatic fraction towards νs = 0.0 and
= 1.0. Interestingly, the effect of asymptomatic transmission on the overall outbreak dynamics varies not only
a
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with the symptomatic fraction, but is also highly sensitive to the ratio of the symptomatic and asymptomatic
infectious periods. For the smaller asymptomatic infectious period of Ca = 0.5 Cs, the outbreak dynamics are
governed by the orange symptomatic population Is and the blue recovered population R decreases with increasing
asymptomatic transmission νa. For the larger asymptomatic infectious period of Ca = 2 Cs, the outbreak dynamics
are governed by the green asymptomatic population Ia and the blue recovered population R increases with increasing
asymptomatic transmission.

Fig. 10 shows the effect of the asymptomatic infectious period Ca. The darkest red, orange, green, and blue
curves correspond to a larger asymptomatic infectious period of Ca = 2 Cs, the lightest curves to a smaller period

a = 0.5 Cs. The middle curves correspond to the special case for which the asymptomatic and symptomatic
opulations display the same dynamics, Ca = Cs, such that the overall recovered population becomes independent
f the symptomatic fraction. This implies that middle blue recovered populations of both graphs are identical and
lso identical to the dark blue curves of Fig. 8. For the larger symptomatic fraction of νs = 0.8, the outbreak
ynamics are governed by the orange symptomatic population Is and the blue recovered population R is relatively

insensitive to the asymptomatic infectious period Ca. For the smaller symptomatic fraction of νs = 0.2, the outbreak
ynamics are governed by the green asymptomatic population Ia and the blue recovered population R increases
arkedly with an increasing asymptomatic infectious period Ca.
Taken together, this sensitivity analysis shows that the outbreak dynamics of COVID-19 are highly sensitive to

symptomatic transmission. This sensitivity becomes more pronounced the more the asymptomatic infectious period
iffers from its symptomatic counterpart. This difference could be a natural result of asymptomatic individuals
solating themselves less since they are unaware that they can infect others. Knowing the precise dynamics of
symptomatic transmission is therefore critical for a successful management of COVID-19.
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